Питання степового лісознавства та лісової рекультивації земель

Міжвузівський збірник наукових праць
Випуск 3

Дніпропетровськ
ДДУ
1999
В заключение следует отметить, что с первых этапов работы Комплексной экспедиции ДГУ над изучением степных лесов и по настоящее время в качестве основных методологических принципов организации научных исследований служили: комплексный биогеоэкологический подход, типология степных лесов и направленность почвообразовательного процесса, разработаные А.Л. Бельгардом и А.П. Травлеем. Осуществленные на их основе зооэкологические исследования легли в основу развития функциональной зоологии на Украине.

Библиографические ссылки

Травлее А.П. Взаимодействие растительности с почвами в лесных биогеоценозах степной зоны Украины и Молдавии: Автореф. дис. ... д-ра биол. наук. - Днепропетровск, 1972. - С. 4-9.

Наделена до редколлегии 24.05.98

УДК 634.0.15+631.46+631.48

КЛАССИФИКАЦИЯ СРЕДООБРАЗУЮЩЕЙ ДЕЯТЕЛЬНОСТИ МЛЕКОПИТАЮЩИХ В ПОЧВООБРАЗОВАТЕЛЬНОМ ПРОЦЕССЕ СТЕННЫХ ЛЕСОВ

А.Е. Пахомов

Днепропетровский госуниверситет

Представлена классификация средообразующей деятельности млекопитающих в почвообразовательных процессах за функциональным приоритетом.

Среди проблем современной экологии средообразующая деятельность животных и ее закономерности являются ведущими в комплексе формирования экосистем и организации их охраны. Особенно необходимо учесть эти закономерности при восстановлении нарушенных систем в регионах с интенсивным антропогенным воздействием на различные природные биообъекты и комплексы с начавшимися бурным процессом их трансформации. В районах горных разработок (лоба, угольных и марганцевых руд, других полезных ископаемых), где интенсивно и катастрофически нарушаются почва и геоботаническая среда, сложившаяся биогеоценотический покров, настоятельно требуется проведение работ по рекультивации нарушенных земель. А как известно, суть таких мероприятий заключается в восстановлении или искусственном создании почвенного субстрата, биоценотический комплекс которого способствовал бы восстановлению связей в искусственном экосистеме и поддержке почвообразовательного процесса.

В связи с этим большое значение приобретает всестороннее изучение деятельности животных, особенно тех ее видов, которые направлены на создание и формирование важнейших компонентов экосистемы. На деятельность животных, заметно способствующую почвообразовательному процессу, обращали внимание специалисты еще в XIX - начале XX вв. Характерно, что основными объектами внимания ученых были млекопитающие (Левковский, 1871). В целом серии последующих работ были раскрыть сущность воздействия на различные стороны почвенно-корнеотлагательных процессов наиболее масштабного и распространенности вида деятельности млекопитающих - их роющей активности. В первую очередь обращалось внимание на изменение физико-химических особенностей почв под воздействием указанного фактора (Панков, 1921; Формо-

На значение экстропизового вида деятельности млекопитающих впервые указывается в связи с их роющей и трофической деятельностью. Постепенно экстропизовая активность млекопитающих начала изучаться как самостоятельный фактор в почвообразовательном процессе (Ходашова, 1970; Злотин и Ходашова, 1972; Пахомов, 1979а).

Несмотря на большой фактический материал, классификация средообразующей деятельности животных в почвообразовательном процессе до настоящего времени разработана слабо. Первая попытка систематизировать типы различной механической деятельности млекопитающих с указанием её роли в почвообразовательном процессе была предпринята украинским зоологом А.А. Мягунным (1946). Он выделил 7 типов такой деятельности: наземные лежки, муравьиные норы (с видами муравьев, микротиновых, кургачниковых); сусличные норы; байбачные норы (байбачки, лисы, барсуки); кровоточевые норы; водные норы, трофические пороги. Зоолог дал характеристику роли каждого типа в почвообразовании. Впервые было обращено внимание на значение вытаптывающей деятельности животных в почвообразовательном процессе. Однако предложенная учёными систематизация роющей деятельности млекопитающих в большей степени отражает лишь видовую или групповую морфоструктуру породы и обобщает их типы по почвообразовательным параметрам.

Более полная систематизация почвообразовательной деятельности млекопитающих отражена в общей классификации всех средообразующей деятельности позвоночных, В.Л. Булаховым (1973). В средообразующей деятельности позвоночных исследователь выделяет 5 типов, в 4-х из которых отражается почвообразовательная роль. В трофическом типе деятельности (виды деятельности: потребительская, выделительная) подчеркиваются особенности аккумуляции биогенных элементов, их соединений, а также возврат их в почву, что способствует повышению плодородия почв, ускорению процессов минерализации. Во роющем типе деятельности животных выделяются пронизывающий, выносящий и комплектно-разрыхляющий виды, в наибольшей степени отражающие фактическое участие животных в почвообразовательном процессе. В типе конструктивной деятельности указывается связь с почвообразованием широких масштабов гидрообороны на разных уровнях почвенных горизонтов. Изменения в почвах происходят за счет накопления в гнездах и норах растительной массы в экстропизовой опад с последующей их минерализацией. При вытаптывании тип деятельности на интенсивность почвообразовательного процесса оказывает влияние уплотнение и нарушение почвенного покрова (разрушение подстилки и верхних слоев почвы, утратобывание почвы).

Большое значение для классификации средообразующей деятельности млекопитающих в почвообразовании имеет ряд работ (Динсман, Соколов и Шилов, 1971; Абатуров, Соколов, 1975; Абатуров, 1979, 1984), в которых обобщена роль роющей и трофической деятельности в этом сложном процессе. Так, В.Д. Абатуров (1984) в 8-ми из 10 обобщённых положений указал на участие животных в почвообразовании (разрыхление, аэрация и увлажнование почвы, вынос на поверхность почвенных минералов, образование минералёфа, обогащение почвы питательными органическими веществами, перемещение химических элементов, участие в увеличении гумусового горизонта, формирование педобиоты). И.Н. Руковский (1986) сделал следы жизнедеятельности животных на 5 обших групп, в 4-х из которых деятельность животных рассматривается как почвообразовательная.

Следует отметить, что во всех вышеизложенных классификационных схемах отсутствует систематизация средообразующей деятельности животных по функциональному приоритету - почвообразованию. Во многих аспектах форма и масштабы средообразующего влияния млекопитающих на почвообразовательный процесс отличаются от животной активности других видов животных. Воздействие млекопитающих часто опосредовано. В отличие от других животных (беспозвоночных, амфибий, пресмыкающихся и птиц) отмечается различное поступление продуктов их метаболизма в почву. Все это дает основание для самостоятельной классификации деятельности млекопитающих в почвообразовательных процессах.

Многогранная средообразующая деятельность млекопитающих представлена широкой гаммой форм. Наиболее четко проявляется воздействие на почву различных видов механической работы млекопитающих. Подавляющее большинство систематических групп млекопитающих, от грызунов до людей, имеет особенности массовой и интенсивной деятельности в почвообразовательном процессе. Распространенную группу млекопитающих можно представить как механический. В свою очередь он разделяется на две противоположные стороны: характер влияния группы (класса) - роющую, вытаптывающую. О первой группе деятельности к настоящему времени накоплен огромный фактический материал, подчеркивающий важность роли влияния млекопитающих на почвы (Воронов, 1953; Булахов, Пахомов, 1985, 1989а).

Среди млекопитающих такых особое место занимают грызуны и насекомоядные, которые накапливают почву густой сетью многочисленных, различных по величине, форме и направлению нор, отростков, ходов, тем самым образуя в ней пустоты и полости. Такой вид роющей деятельности многие исследователи называют пронизывающей. Вследствие ее изменением физико-химические свойства почвы, формируется своеобразный, зогенно
проживания микроклимат, изменяется гидротермический режим, уменьшается твердость почва, изменяется ее термические, увеличивается увлажненность почв и ее водопроницаемость, уменьшаются потери влаги от непродуктивного испарения, улучшается аэрация почв (Извинский, 1894; Франценсон и Свиннов, 1928, Пахомов, 1978, 1997a; Дмитриев, Худяков, 1990).

Многие млекопитающие в поисках пищи (личинки насекомых, корнеплоды) распахивают поверхность почвы от 2 до 25 см. Такое взрыхление верхних слоев почвы осуществляют кабан, лисица, барсук, куница. В разрыхленных участках усиливается аэрация почв, перемешиваются подстилка, экскременты и травяной покров с почвенным субстратом, что повышает степень их разложения. Такой вид юршей деятельности, по нашему мнению, следует называть копательно-разрыхляющим.

Вторым важным типом воздействия млекопитающих на почвенный покров следует считать трофический. Прямое изъятие биомассы в процессе трофизма уже является первым звеном их участия в разложении растительных и животных организмов. Лишь небольшая часть потребляемого корма продуцируется во вторичную продукцию. Возвращается обратно в виде непереработанных остатков (екскреций) его 10-50 %, остальная часть полностью или частично расщепляется в процессе метаболизма и выделяется наружу с моющей в газообразном состоянии при дыхании в форме простых органических или минеральных соединений. При этом чрезвычайно важно учитывать (Абатуров, 1979), что трофическое участие млекопитающих в разложении первичной и вторичной продукции заключается не только в образовании экскрементов, а в полном расщеплении (минерализации) потребляемой продукции в процессе метаболизма в организме. Иногда изъятие фитомассы млекопитающими составляет 60-70 % наземной части растительной продукции (Абатуров, 1979). Таким образом, трофический тип воздействия млекопитающих в почвообразовательных процессах является весьма значимым и наиболее распространенным. Кроме прямого изъятия биомассы (особенно фитомассы), отмечаются косвенные потери (сорванная, сломанная, сбитая, объеденная и т. п.). Для косвенных трофиков соотношение прямого и косвенного изъятия составляет 1:4, для копытных 1:2 (Булахов, 1980). Косвенные потери при трофике более значительны, и они скорее включаются в редукционный цикл. Учет всех этих особенностей позволяет выделить следующие виды деятельности, имеющие прямое отношение к почвообразовательному процессу: трофино-механическую, экскрементную, мочеуспешенную и газовообразующую, которые относятся к двум классам деятельности — потребительской и метаболической.

Третий тип воздействия млекопитающих на почвенные процессы следует назвать конструктивным. По размаху он значительно уступает механическому и трофическому, но играет определенную роль в ускорении разложения растительного субстрата. Здесь четко выделяется один класс и вид деятельности — жизнедеструкционный. К этому типу можно отнести и различные конструкции гор, которые по своему характеру все же скорее относятся к механическому типу воздействия. Жизнедеструкционная деятельность связана обычно с соединением различных материалов, собранных в окружающей среде для создания качественно новых предметов. Млекопитающие создают гнезда в различных почвенных горизонтах. Такие гнезда служат удобным притягивающим для различных эктопаразитов. На это было обращено внимание при разработке мер борьбы с различными паразитарными болезнями. Выяснилось, что подземные гнезда млекопитающих являются местом массового развития педохоза — преимущественно сапрофагов. Создаются очаги более активные в биологическом отношении. Сам же субстрат, разлагается при помощи сформировавшегося
Сапрофитного блока, является дополнительным источником поступления органических и минеральных веществ (Косолапова, 1965; Лопатина, Петров-Никитина, 1996).

Безусловно, предлагаемая нами схема систематизации средообразующей деятельности млекопитающих, направленной на посевообразовательный процесс, далека от завершения. Однако она позволит упорядочить представления об участии животных в посевообразовательных процессах при проявлении различного образа жизни.

Общая схема классификации средообразующей деятельности млекопитающих в посевообразовательном процессе, приведенная в таблице, основана, как упоминалось выше, на главных показателях форм воздействий, вызывающих прямые или опосредованные связи с посевообразовательным процессом. Наряду с выделением каждого типа и класса воздействия представлены виды деятельности животных с кратким описанием основных форм их участия в посевообразовательном процессе.

Схема классификации средообразующей деятельности млекопитающих в посевообразовательном процессе

<table>
<thead>
<tr>
<th>Тип воздействия</th>
<th>Класс деятельности</th>
<th>Вид деятельности</th>
<th>Основные формы участия в посевообразовании</th>
</tr>
</thead>
</table>
| Механический | Роющий | Пронизывающий | Уменьшение твердости почвы, увеличение влагозапасов, изменение трещин, образование отрицательных элементов микрокорефета, формирование химических свойств, распределение на генетические горизонты, увлажнение содержания гумуса и его распределение в более глубоких горизонтах, катализ химических процессов, формирование биологической активности, изменение функционального состава педоботры.
| | Вывосший (переотложный) | | Вынос на поверхность глубинных горизонтов почвы и подложенного материала, перемещение разных генетических уровней почвенного покрова, образование положительных элементов микрокорефета, остроугловое почвы, перераспределение влаги, увеличение легкоокрашиваемых солей, распределение обменных катионов, обогащение верхних слоев легкоокрашиваемыми солями, перемещение химических элементов, изменение трещин, изменение микробиологической активности, обогащение педоботры. |
| | Глубоковоронежный | | |

<table>
<thead>
<tr>
<th>Контрольно-разрыхляющий</th>
<th>Вытаптывающий</th>
<th>Тропный</th>
<th>Стадного перемещения</th>
<th>Лого-лапский</th>
</tr>
</thead>
<tbody>
<tr>
<td>Глубоковоронежный</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Библиографические ссылки

Булаков В.Л. Физиология позвоночных животных как структурный компонент лесных биогеоценозов степной зоны Украины: Автореф. дисс... д-ра биол. наук. - Днепропетровск, 1980. - 48 с.

УДК 574.42 (477.63)

БИОЭКОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ГАЛОФИТНОГО ЭКОТИПА ДУБА ЧЕРЕШЧАТОГО В УСЛОВИЯХ СТЕПНОГО ПРИДНЕПРОВЬЯ

Ю.Г. Гамула
Харьковский госуниверситет

Охарактеризованы особенности роста и развития галофитного экотипа дуба черешчатого на разных стадиях онтогенеза в условиях засоленных местообитаний в долинах степных рек Орель и Самара.

Многолетние исследования однолетних и многолетних растений показали, что на протяжении всего ареала виды не остаются неизменными: под влиянием природных условий они трансформируются в более мелкие таксономические единицы. Одной из них, характеризующей способность вида приспосабливаться к разным условиям существования в пределах ареала, является экотипы (Лукьянец, 1979).

Под экотипом понимают группу природных популяций или совокупность нескольких популяций вида, приспособленных к конкретным условиям существования и способных к самовозобновлению. Как составная часть экотипы они определяют структуру генофонда вида в конкретных условиях роста и отображают степень соответствия его конкретным природным условиям.

Каждому экотипу как приспособительной форме присущи характерные экологические признаки, которые свойственны всем его представителям. Это могут быть как хорошо выраженные, так и менее заметные морфологические признаки, а также биологические и физиологические особенности особей, составляющих экотопическую популяцию.

Исходя из причин, благодаря которым обособились экотипы, и факторов под влиянием которых они сформировались, различают три категории экотипов: климатические (климатипы), грунтовые (глобипы) и фитоценотические (фитоконы-типы) (Сукачев, 1938).

Изучение галофитного экотипа дуба является частью исследований, проводимых нами с 1994г. в плане работ Комплексной экспедиции Днепропетровского горного университета по изучению лесов степного Приднепровья. Наши исследования экологических условий существования галофитных дубрав, их динамики, структурной организации и возможностей возобновления, истории развития и направлений антропогенной деградации являются продолжением работ начатых А.Л. Бейнардом (1980). Исследованиями охвачены галофитные дубравы долин степных рек Орель и Самара в пределах Днепропетровской области.

© Гамула Ю.Г., 1999