УДК 550.4+591.5

А. Е. Пахомов, О. Н. Байбуз, А. Н. Мисюра Днепропетровский национальный университет

СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА СОДЕРЖАНИЯ МИКРОЭЛЕМЕНТОВ В ОРГАНИЗМЕ РАЗЛИЧНЫХ ВИДОВ ДОЖДЕВЫХ ЧЕРВЕЙ С УРБАНИЗИРОВАННОЙ ТЕРРИТОРИИ И ИСПОЛЬЗОВАНИЕ ЭТИХ ПОКАЗАТЕЛЕЙ ДЛЯ БИОИНДИКАЦИОННОГО КАРТОГРАФИРОВАНИЯ ГОРОДСКОЙ СРЕДЫ Г. ДНЕПРОДЗЕРЖИНСКА

Проведено порівняльний аналіз вмісту мікроелементів в організмі дощових черв'яків, що зустрічаються в більшості біотопів м. Дніпродзержинська. Визначено райони міста з найбільшою мірою забруднення важкими металами, як біогенними, так і токсичними. Отриманий картографічний матеріал може бути використаний не тільки для оцінки ступеню забруднення, але й для розробки екологічного паспорта міста.

Состояние дел в области охраны окружающей среды во всем мире в настоящее время нельзя признать удовлетворительным. И причина не в том, что ей уделяется мало внимания или проведено мало исследований. Наоборот, качество работ, измерений, фактов, цифр очень огромно. Однако это не приближает к реальным проблемам. Поэтому речь идет не только о пополнении данных, а и об отборе тех, которые имеют отношение к делу. Отсутствие единой методологии приводит к тому, что имеющиеся в настоящее время данные не систематизированы и часто неправильно интерпретируются, что и приводит к неправильным выводам и рекомендациям [1].

Украина – крупнейшая европейская страна. На ее территории разведано более 70 видов полезных ископаемых, которые добываются, и 2000 месторождений. Украина может служить наглядной моделью всего спектра антропогенных экологических проблем и катастроф современности. Ежегодно в составе техногенных и бытовых газообразных выбросов в атмосферу попадаст около 200 мл. т. оксида углерода, более 1 млн. т. свинца. В 21 городе концентрация вредных веществ в атмосферном воздухе превышает ПДК в 25 раз. В этих городах проживает более 22 % населения Украины. Более 20 % общего объема вредных выбросов в атмосферу дает автотранспорт, что составляет 6,5 млн. т/год [2].

Наиболее высокая загрязненность атмосферного воздуха характерна для Донецко-Приднепровского и Приднепровского регионов. Суммарные выбросы загрязняющих веществ в атмосферу в городах Днепропетровской области составляют максимальный уровень для г. Кривого Рога — 368,3 тыс. т/год, Днепропетровска — 140,7 тыс. т/год, а в Днепродзержинске — 108,5 тыс. т/год. На каждого жителя в Днепродзержинске, несмотря на спад уровня промышленного производства, приходится 390 кг загрязняющих веществ, выбрасываемых в атмосферу, среди которых немаловажную часть составляют и тяжелые металлы, которые, находясь в составе выбросов в атмосферу в рассеянном,

[©] Пахомов А. Е., Байбуз О. Н., Мисюра А. Н., 2001

особо активном состоянии, загрязняют не только воздушную среду, но и почву, водную среду, представителей фито- и зооценоза и оказывают крайне отрицательное влияние на среду обитания человека.

В связи со всем указанным выше, необходим выбор объектов для биоиндикации различных составляющих природной среды города.

Почвенные беспозвоночные, и среди них наиболее распространенная часть зооценоза городской среды являются объектами исследований, которые наиболее адекватно отражают состояние загрязнения почв урбанизированных территорий тяжелыми металлами, что и необходимо проверить на территории г. Днепродзержинска.

На территории города было обнаружено 9 видов дождевых червей, однако не представилось возможным провести сравнительные исследования накопления тяжелых металлов как у животных разных видов из одной точки исследований, так и одного вида во всех местах обитания животных, вследствие того, что в различных биотопах города обитают разные виды.

В связи с этим было проведено сравнительное исследование накопления микроэлементов в организмах разных видов дождевых червей.

Черви отбирались методом выкапывания с глубины 20-50 см. У собранных особей в лабораторных условиях определялся вид и производилось взвешивание на торсионных весах WT – 2 с точностью до 0,001 г. Для дальнейшего анализа микроэлементов пробы помещались в сущильный шкаф где высущивались при температуре 105-110 °C до постоянного веса в течении 48 часов.

В дальнейшем сделанные навески проб помещались в муфельную печь, температура которой постепенно повышалась до 450 – 500 °С и проводилось сжигание до получения золы серо-белого цвета в течении 48 часов.

Затем пробы заливались концентрированной азотной кислотой (HNO3 – OCЧ) и помещались на песочную баню, где кислота упаривалась до образования влажных кристалов, а проба заливалась бидистилированной или деионизированной водой и нагревались на песочной бане до полного растворения. Полученный раствор фильтровался в мерные колбы емкостью 10 или 25 мл. в зависимости от первоначального веса навески пробы через фильтр «синяя лента». Содержание микроэлементов (Fe, Mn, Cu, zn, Ni, Pb, Cd) производились на атомно-абсорбционном спектроотометре AAS - 30 фирмы Карл Цейнс Иена (Германия).

Расчет содержания микроэлементов производился по формуле:

$$C0 = C1V/p$$

в мкг/г или мг/кг, где: C — срдержание микроэлемента в пробе: мкг/г или мг/кг; V — объём раствора , мл; p — вес навески, r. T аблица 1

Сравнительная характеристика содержания микроэлементов в почвах различных биотопов г. Днепродзержинска

Содержание микроэлементов, мг/кг								
Место отбора	Fe	Mn	Cu	Zn	Ni	Pb	Cd	
Черемушки	1550,0	82,64	2,02	241,9	7,91	5,75	2,94	
Парк Горького	902,45	143	3,229	1661,5	16,815	12,12	32,16	
Левый берег	130,215	45,02	2,53	915,5	3,29	3,34	8,87	
ДК «Химик»	155,8	78,54	11,86	52,09	9,73	115,9	23,81	
Романково	245,35	73,66	3,08	256,18	7,21	20,85	16,46	
«Азот»	530,5	35,35	0,68	1020,5	5,895	21,95	7,49	
Центр	464,0	39,76	1,2	1524,9	56,83	5,68	3,94	
ПХЗ	502,09	95,48	9,73	856,0	44,77	9,32	9,73	
ПХЗ (район церкви)	435,0	93,09	6,42	693,5	9,99	16,99	13,18	

В табл. 1 представлены данные по содержанию микроэлементов в почве различных биотопов города. Исходя из них, можно сделать выводы о том, что наиболее высокими в почвах являются показатели железа и цинка, за которыми следует в порядке убывания марганец, никель, свинец, а также в отдельных биотопах кадмий или мель.

По степени убывания микроэлементов исследуемые биотопы можно раслоложить в следующем порядке (далее биотопы будут называться по территориальному признаку, согласно экологическому паспорту города).

- железо – Черемушки, парк Горького, ДПО «Азот», ПХЗ, центр города, ПХЗ-район церкви, Романково, ДК «Химик», Левый берег;

- марганец – парк Горького, ПХЗ, ПХЗ-район церкви, Черемушки, ДК -Химик», Романково, Левый берег, центр, ДПО «Азот»;

- медь – ДК «Химик», ПХЗ, ПХЗ-район церкви, парк Горького, Роман-ково, Левый берег, Черемушки, центр, ДПО «Азот»;

- цинк — парк Горького, центр, Левый берег, ПХЗ, ПХЗ-район церкви, Романково, Черемушки, ДК «Химик»;

- никель - центр, ПХЗ, парк Горького, ПХЗ-район церкви, ДК «Химик», Черемушки, Романково, ДПО «Азот», Левый берег;

- свинец – ДК «Химик», ДПО «Азот», Романково, ПХЗ-район церкви, дарк Горького, ПХЗ, Черемушки, центр, Левый берег;

- кадмий – парк Горького, ДК «Химик», Романково, ПХЗ-район церкви, ПХЗ, Левый берег, ДПО «Азот», центр, Черемушки.

Как видно из этих данных, почвы города характеризуются значительной зариабельностью содержания микроэлементов, хотя надо отметить повышение уровня содержания биогенных элементов железа в районе Черемушки, а мартанца и цинка в районе парка Горького.

Содержание токсичных элементов свинца и кадмия характерно почвам ДК Химик» и парка Горького. Высокое содержание практически всех исследуемых элементов в районе крупных промышленных предприятий ПХЗ, ДПО «Азот».

В связи с тем, что наиболее распространенным видом дождевых червей из всех биотопов города является такой вид как А. гозеа, он и стал основным для проведения биоиндикационных исследований. Однако степень различия в накоплении микроэлементов у разных видов удалось оценить для таких видов как А. гозеа и А. caliginosa в 4-х точках города как это представлено на табл. 2 и 3. Как видно из полученных данных, в организме А. гозеа отмечается снижение уровня биогенных элементов железа и марганца во всех исследуемых биотопах (парк Горького, Плотина, Романково, район ДПО «Азот», ПХЗ). В районе Романково отмечается одинаковый уровень остальных исследуемых элементов (Cu, Zn, Ni, Pb, Cd) для обоих видов.

Таблица 2
Сравнительная характеристика содержания микроэлементов в организме
дождевых червей (A. Rosea) из различных биотопов города Днепродзержинска

. Содержание микроэлементов, мг/кг								
Место отбора	Fe	Mn	Cu	Zn	Ni	Pb	Cd	
Черемушки	1352, 73	36,02	10,23	1455,54	7,38	10,96	1,274	
Парк Горького	94,531	2,206	29,137	756,803	36,954	83,965	21,78	
Плотина	94,19	0,265	119,85	568,83	119,5	115,5	37,66	
ДК «Химик»	97,068	3,108	23,08	176,48	34,414	2941,4	6,98	
Романково	125,146	10,309	10,25	178,32	16,481	17,54	3,38	
Пос. Строителей	75,07	0,45	19,95	479,36	42,54	35,38	6,49	
Центр	86,459	0,998	30,373	127,59	74,1	72,313	14,85	
ПХЗ(район церкви)	119,7	75,73	37,84	368,44	139,94	20,541	8,16	
«Азот», ПХЗ	98,956	5,825	62,11	1917,0	189,0	221,88	16,2	
ПХ3	82,953	1,218	20,83	430,83	374,4	135,83	4,6	
Р. Коноплянка	10230,2	671,22	352,33	263,0	123,11	21,0	71,0	

Сравнительная характеристика содержания микроэлементов в организме А. calaginosa из различных биотопов г. Днепродзержинска

Содержание микроэлементов, мг/кг									
Место отбора	Fe	Mn	Cu	Zn	Ni	Pb	Cd		
Парк Горького	5879,657	148,333	44,197	46,419	186,419	73,3209	5,8641		
«Азот» (С1-органика)	1574,9	159	15,764	504,14	293,94	54,97	33,441		
Ул. Хасанова	4120,8	76,5	42,37	179,7	42,59	47,125	5,166		
Романково	1363,24	117,74	10,25	178,32	16,481	17,54	3,376		
Перес. ул. Ленинград- ской и пр. Ленина	1279,93	163,48	8,934	164,82	22,55	32,161	3,451		
Ул. Днепропетровская	2986,94	47,119	18,055	110,19	28,114	19,048	4,064		
ПХЗ (район церкви)	1797,67	47,051	17,69	242,14	17,67	18,134	5,062		
«Азот», ПХЗ	1937,79	40,765	22,274	121,64	34,887	48,851	2,635		
ДКХ3	6231,75	96,98	42,125	47,98	191,562	92,937	13,81		
Плотина	4755,00	101,3	34,12	254,06	31,208	108,35	4,3406		

Следует отметить, что в организме A. гоѕеа содержание как биогенных элементов (Cu, Zn, Ni), так и токсичных (Pb, Cd) из района химических предприятий ДПО «Азот» и ПХЗ значительно выше, чем в организме A. caliginosa. В целом, содержание токсичных элементов свинца и кадмия в организме A гоѕеа более высоко во всех исследуемых биотопах, что делает этот вид более подходящим для биоиндикационных исследований, в то время как для оценки загрязнения среды такими биогенными металлами как железо и марганец следует выбирать A. caliginosa.

Данные по остальным обнаруженным видам дождевых червей L. nordenskioldi, Lumbricus rubellus, Octalasion transpadanum, Dendrobaena veneta, Dendroarilus rubidus, Octalasion lacteum весьма недостаточны, поскольку они обнаружены в отдельных биотопах города, что не дает возможности произвести их сравнительный анализ.

У перечисленных выше исследуемых видов отмечается высокая степень накопления в организме тяжелых металлов, но их нельзя использовать в качестве биоиндикаторов загрязнения среды обитания тяжелыми металлами, вследствие редкой встречаемости и низкой численности в местах обитания.

Таким образом, все вышеизложенное позволяет выбрать в качестве видабиоиндикатора Aporrectodea rosea, поскольку он обитает в большинстве биогеоценозов города и отмечается высокой численностью и биомассой по сравнению с другими видами. Одновременно этот вид характеризуется как виднакопитель, а следовательно и биоиндикатор содержания в окружающей среде токсичных элементов свинца и кадмия (табл. 3).

Таким образом, полученные данные по содержанию тяжелых металлов позволили разделить территорию города на три категории:

- 1. Наиболее загрязненные биотопы;
- 2. Биотопы со средним уровнем загрязнения;
- 3. Наименее загрязненные биотопы.

К первым относятся биотопы в районе р. Коноплянки (остров Корчеватый), промзоны ДПО «Азот» и ПХЗ, район плотины; ко вторым — район поселка Строителей, Романково и центр города; наименее загрязненными биотопами являются парк Горького и район Черемушки (ул. Кима).

Результаты проведенных исследований позволили разработать картографический материал, наглядно отображающий как степень загрязнения почв, так и, в первую очередь, загрязнение тяжелыми металлами одной из наиболее распространенных групп зооценоза и почвенных беспозвоночных — дождевых червей.

Библиографические ссылки

- 1. Кораблева А. И., Шапарь А. Г., Гербильский Л. В., Полищук С. 3. Антропогенные проблемы экологии. Д.: Вид-во «Промінь», 1997.-142 с.
- 2. **Швен В. Я., Приходченко А. Г.** Экологические проблемы Днепродзержинска. Днепродзержинск, 1997. 90 с.

Надійшла до редколегії 03.04.2001.